
Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025

Available at https://journalenrichment.com/index.php/jr/

Enrichment: Journal of Multidisciplinary
Research and Development

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1142

Construction and Optimizing Domain Driven Design Principles and Twelve

Factor Application Methodology for Software Backend Architecture Risky

Risky Kurniawan*, Rangga Sanjaya

Universitas Adhirajasa Reswara Sanjaya, Indonesia

Email: riskykurniawan15@gmail.com*

ABSTRACT

Software architecture plays a crucial role in software development; however, finding an architecture that

remains continuously adaptable, employs a declarative format, supports scaling, and is suitable for modern

cloud platforms is challenging. Additional challenges often arise due to business and technical obstacles during

development. This study aims to design a software architecture that supports continuous development, enables

declarative deployment, and incorporates clean contracts based on the twelve-factor app methodology. The

goal is to create an architecture applicable to modern cloud platforms, supporting scalability and leveraging

domain-driven design to eliminate business and technical constraints. The research follows a waterfall

methodology, starting with analysis, followed by system design, implementation, testing, and delivery. The

findings indicate that the proposed architecture exhibits continuous development characteristics and adopts the

twelve-factor app principles, resulting in a descriptive format and clean contracts. The architecture is also

compatible with modern cloud platforms and supports scaling. Additionally, the use of domain-driven design

enhances resource allocation effectiveness and helps eliminate business and technical limitations.

Keywords: Software Architecture, Backend, Domain-Driven Design, Twelve-Factor App

INTRODUCTION

Technological advancements in building information systems have resulted in the

development of web service technologies such as SOAP (XML), RestApi (JSON), and gRPC

(Protobuf) (Marii & Zholubak, 2022; Sharma, 2023; Yellavula, 2020). These technologies

improve the efficiency of message exchange and enable new data communication methods. As

a result, microservices-based architectures have been adopted for their increased flexibility and

streamlined workflows (Ait Said et al., 2024; Raj & David, 2021).

Software deployment methods have undergone a transformation, transitioning from SCP

(file transfer) to CI/CD (Continuous Integration and Continuous Delivery) with a container-

based approach (Shah et al., 2020). CI/CD is widely recognized for its ability to mitigate the

risk of software malfunction post-deployment (Thatikonda, 2023; Karunarathne et al., 2024;

Saieva & Kaiser, 2022; Throner et al., 2023). In this context, software architecture assumes a

pivotal role in software development. One of the key challenges is to design a robust software

architecture that remains adaptable and can accommodate various changes. In the

contemporary landscape, software is often delivered as a service, such as web applications or

Software as a Service (SaaS) (Raghavan R et al., 2020; Ali et al., 2020; Li & Kumar, 2022;

Pervin, 2021; Lopez-Viana et al., 2020). The twelve-factor app methodology is particularly

well-suited for building applications as a service, leveraging a declarative format, clean

contract usage with operating systems, compatibility with modern cloud platforms, minimizing

https://journalenrichment.com/index.php/jr/

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1143

differences between development and production environments, and enabling upgrades

without significant changes (Telang, 2022; Sangapu et al., 2022; Indrasiri & Suhothayan, 2021;

Stüber & Frey, 2021).

Domain-driven design, a methodology that has emerged over the past two decades, is a

powerful tool in software architecture for developing information systems (Oukes et al., 2021;

Özkan et al., 2021; Hofer & Schwentner, 2021; Vural & Koyuncu, 2021; Singjai et al., 2021).

It is highly regarded for its effectiveness in developing systems with complex business

processes, providing tools to prevent miscommunication between business teams and software

development teams. The twelve-factor app methodology, with its emphasis on practicality and

adaptability, serves as a guiding light for architectural development, making it particularly

suitable for projects with high complexity (Khan et al., 2021; Kosińska et al., 2023).

It is challenging to find a software architecture that is ready to use, can embrace

technological changes, and allows for the practical implementation of new technologies. Many

architectures still need a declarative format, which can significantly impact time and cost,

especially when new developers are involved. Additionally, many architectures must be

optimized for modern cloud platform technologies, allowing them to scale up without requiring

changes to development practices.

While the adoption of Domain‑Driven Design (DDD) for enhancing modularity and

clarity in complex software systems is well-supported—Özkan et al. (2023) highlight DDD’s

benefits in defining clean domain models, bounded contexts, and facilitating decomposition in

microservices architectures─yet they note the lack of empirical or implementation-focused

validation in real-world cloud-native services. Similarly, research on the Twelve‑Factor App

methodology emphasizes its effectiveness in guiding cloud-native, SaaS-oriented architectures

(e.g., Heroku’s principles ensuring portability, declarative setup, and scalable deployment), but

does not examine how it integrates with DDD practices for backend application boundary

definitions.

The author is interested in designing a software architecture with backend application

boundaries using domain-driven design principles and the twelve-factor app methodology. The

aim is to adapt to and practically accept technological changes and be compatible with modern

cloud platform technologies. The contribution lies in providing a practical, ready-to-use

architectural blueprint that simplifies onboarding, supports evolving technologies, and

streamlines development cost and time—benefiting software architects and development teams

working in dynamic cloud-native ecosystems.

METHOD

This research aims to design a backend software architecture using the waterfall software

development method in Figure 1, which is part of the System Development Life Cycle (SDLC).

The process begins with an analysis of the software's needs and objectives, followed by

designing the system or software architecture. The design is then implemented in code, tested,

and delivered.

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1144

Figure 1. Method Research

Requirement Analysis

Requirement analysis involves gathering relevant data from literature reviews and

technological advancements. The next step is to analyze the criteria for the software

architecture, which must meet the ease of implementing new technologies, a declarative format

for automation setup, clean contracts for operating system use, compatibility with modern

cloud platforms, ease of deployment, ability to scale up without significant changes in tooling,

architecture, or development practices, and minimize software development barriers by

eliminating the gap between business and technical aspects.

Our strategy for meeting these criteria involves creating a software architecture that

allows easy integration and detachment of technology without over-reliance on individual

components. A key aspect of this strategy is adhering to the methodology of the twelve-factor

app, a set of principles for building modern, scalable, and maintainable software-as-a-service

applications. This standardization and presentation as a service, whether web applications or

SaaS (Software as a Service), ensures the architecture's usability as either monolithic or

microservices-based services and compatibility with modern cloud platforms.

The next step in our proposal is for the architecture to implement the principles of

domain-driven design. This software development approach is not just about writing code, but

about developing a domain model that comprehends the domain's processes and rules. It is

centered on collaboration between technical experts and domain experts, ensuring that the

software architecture aligns with the business needs and requirements.

System Design (Design)

The system design phase involves designing the architecture layer framework and

modelling the software architecture system. The architecture layer framework in Figure 2 is

modified from the Traditional N-layered architecture framework, which consists of

presentation, business, and data layers. The architecture layers include application layers,

interface layers, and domain layers. Application layers are used for program initialization,

process setup, and managing application scalability. Interface layers contain user methods for

accessing the application and interacting with software users. Domain layers contain services,

models, and repository layers, handling business process logic. The layered architecture

structure separates responsibilities and enhances application scalability. All components are

easily detached and reattached, allowing the architecture to adapt to practical technology.

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1145

Figure 2. Architectural Layer Design

During the system modelling phase, the software architecture is modelled using Unified

Modeling Language (UML), a widely used standard language in the industry. UML can define

requirements, conduct analysis, design system workflows, and illustrate architecture in object-

oriented programming. This approach ensures that the architecture can be easily detachable

and reattached, allowing the architecture to adapt to practical technology.

Implementation

The implementation process involves creating a software architecture by writing it in a

specific programming language, such as Go (Golang). The outcome of the implementation is a

base code that can be directly utilized for software development.

Testing

This study focuses on software testing to minimize mistakes and flaws in new

architectures. Black box or functional testing assesses functionality based on input and output

behavior without examining the codebase's structure. It involves running each component in

the application and observing its compliance with the system design. Load testing assesses the

architecture's resilience under varying conditions and surges in software users. The main

benchmarks for load testing are response time and error rate. This study uses Apache JMeter

software for load testing, which serves as performance testing to ensure the software functions

as expected under various circumstances. Both methods ensure that the software functions as

expected under various circumstances.

Delivery

The next stage is delivery once the testing process is complete and the architecture is

deemed satisfactory. This phase involves distributing the software as a repository while

including a license in the program's codebase. Each delivery process will always produce a

new version of the software. In this study, the type of license to be used is MIT, allowing users

to utilize the software for commercial purposes, modification, distribution, and personal use.

Semantic versioning will be employed using the major, minor, and patch format (1.0.0).

RESULTS AND DISCUSSION

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1146

Architecture Overview

The software's architecture concept in Figure 3 is intended for building backend

applications. It is built using the Go programming language, which was chosen for its

advantages, particularly in handling concurrency. This allows the language to execute

programs using multiple threads and non-blocking operations.

Figure 3. Architectural Overview

The software architecture developed comprises two distinct programs packaged within

one architectural type. The first application, ELSA (Electronic Smart Assistant), is designed to

handle all forms of administrative processes. The second application, Xarch (X Architecture),

operates business services based on a domain and offers various options. The software

architecture is designed to facilitate the reuse of each component and minimize dependency on

various existing components. This approach aims to simplify the integration of new

technologies, both supporting and data communication methods.

The architecture overview includes several architecture blocks with different functions

and purposes. The first block is the application layer, which is the program's initiation layer

and handles configuration reading and driver initialization. Next is the interfaces block, which

provides a gateway for interaction between software service users and specific methods and

technologies, consisting of HTTP server services and consumers in its current implementation.

The next block is the domain, initialized according to domain-driven design principles. The

final block is backing services, which support the software architecture.

Architectural Characteristics

 Architectural characteristics describe the expectations of software architecture at both

operational and technical levels, encompassing its core purpose, quality standards, and division

of responsibilities among different units. Continuous development is a crucial characteristic of

our architecture, allowing developers to evolve and implement new technologies. Our

architecture is designed to embody continuous development, with services divided into small,

loosely coupled units, enabling developers to upgrade the existing architecture by integrating

or removing technologies efficiently.

 Multiple applications or mono repos are unique characteristics of our architecture. They

allow developers to create one or more applications within the same architectural scope or

codebase. This high reusability characteristic is particularly beneficial when there are

similarities in business processes. Reusability is essential, as the classification and separation

of processes into smaller components enable the reuse of previously defined processes.

 The developed architecture supports horizontal scale-out processes within the

application's interface block. Developers can scale by providing arguments for interfaces to be

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1147

scaled according to the definitions in the application block. However, the architecture does not

currently support automatic scaling. Our architecture offers flexibility, adaptability, and a

strong foundation for software development.

Architectural Layer Framework and Rules

The architecture adopted the Traditional N-layered architecture design, consisting of

three distinct yet interconnected layers: the application, interfaces, and domain.

The application layer defines programs to be executed based on interactions initiated by

developers, facilitating the initiation of projects and creating applications within the same

codebase.

The interface layer initializes input and output unit services technologies, limiting

developers' ability to provide instructions in the form of business processes or logic sequences.

The application can only accept requests and display responses generated by the domain layer's

processing units. Handlers contain instructions for retrieving parameters or request bodies,

which are forwarded to the next layer according to the predefined payload contract for the

target domain.

The domain layer is divided into sub-layers, including domain services, domain data and

repository, and domain data and model. The services layer prohibits direct interaction with

support services and dependencies, while the domain data and repository layer should not

contain business processes or mathematical calculations. The domain layer is built according

to the requirements and plans established by domain experts or individuals who deeply

understand the purpose of the application.

In practice, the interfaces layer cannot use the domain layer directly, and developers must

register the domain in the "domain.go" file to use it by all interfaces.

Architectural Modelling

Architectural modelling is employed to provide a visual representation of the developed

architecture. The modelling will be created using Unified Modeling Language (UML),

illustrated through a use case diagram in Figure 4.

Figure 4. Architectural Usecase Modeling

Communication Flow

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1148

An overview of the communication flow in Figure 5 begins with the interfaces

component, which is then passed through middleware and handlers according to the previously

defined routing. In the subsequent process, incoming requests are processed in the domain

service, and if supporting services are needed, the interaction continues to the domain

repository.

Figure 5. Architectural Communication Flow

Folder Structure

The folder structure in Figure 6 is an essential aspect of the architecture. It should

effectively represent the function and purpose of all the files within it to prevent confusion

when developers need to manage and utilize the files.

Figure 6. Folder Structure

Collaboration Mechanism

The collaboration mechanism in a developed architecture is flexible, allowing developers

to choose their methods during the software development process. However, it must adhere to

domain-driven design principles, establishing a communication mechanism using ubiquitous

language to prevent miscommunication. The architecture divides processes into minor

components within different layers, offering advantages for collaboration and specific

allocation of human resources. For instance, an infrastructure engineer can manage the

application layer, while a software or backend engineer and domain experts can manage the

interface and domain services layers. A database administrator or data engineer can manage

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1149

the domain data and repository layer. The use of ubiquitous language and the division of human

resources aim to achieve efficiency and eliminate barriers between business and technical

aspects.

Implementation of The Twelve-Factor App Methodology

1) Codebase: The first principle involves adopting a codebase for revision control. All changes

should be easily traceable. The developed architecture has implemented revision control

using the GitHub platform.

2) Dependencies: A packaging system or dependency management is necessary for efficiently

distributing applications. This system helps automate the setup of supporting libraries. The

architecture has implemented dependency management using Go modules. As a result,

developers only need to enter the command "go get ./…" in the terminal during installation.

3) Config: This principle requires the application to store all configurations in a file. There

are no strict rules regarding file type or format. The architecture follows the principle of

storing configurations in the environment, enabling developers to modify settings in the

".env" file. The architecture reads configuration data from the ".env" file and the operating

system and machine. This approach streamlines deployment, especially in distributed

environments such as containers. Developers can set configurations in environment

variables within virtual machines, containers, or operating systems.

4) Backing Services: In this principle, supporting services must be outside the application.

When a change occurs from a local service to a publicly distributed third-party service,

adjustments should be possible without changes to the codebase. The designed architecture

adheres to this principle, allowing changes in credentials or hosts through the provided

environment.

5) Build, Release, Run: In this principle, the codebase should compile into a bundle that

developers can execute, followed by a release with a specific code and the ability to run it.

This principle is directly implemented by the programming language used. In Go,

applications can be directly built into binary files or executables. Additionally, the

architecture includes a Dockerfile to facilitate compilation into a container image. The

release mechanism is performed manually.

6) Processes: In this principle, applications should be stateless, meaning they should not retain

data in any form. If an application needs to store data, it should do so only temporarily or

for a single process. This approach maintains data consistency, especially during scaling

through application replication. The developed architecture adheres to a stateless approach,

with all data stored in backing services rather than being retained within the application.

7) Port Binding: This principle requires an application to export services through specific

ports. An application should run independently and not rely on runtime injection from the

execution environment. Applications should bind to specific ports and listen to all incoming

requests on those ports. This principle has developed the architecture, with a machine state

in each interface layer. Port binding can be easily adjusted according to configurations in

the application environment.

8) Concurrency: In this principle, applications should be able to scale out horizontally and be

reliable based on specific services with high workloads. This principle has been applied in

the developed architecture. Developers can quickly scale out any desired service. In

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1150

implementation, there are two interfaces: HTTP and consumer workers running in the

background. The ease of scaling out is based on the layered design and the application of

domain-driven architecture, which prevents excessive dependency on any single

component. Additionally, scaling out is easily achieved due to the stateless nature of the

architecture. In scaling out, developers only need to rerun the program with the appropriate

flags for the desired service. By default, when the program is run with the command “go

run main.go xarch,” the program initializes one HTTP server and one consumer. If the

consumer has an excessive workload and needs to scale out, developers can rerun the

program with the specific engine interfaces flag, such as “go run main.go xarch -

engine=consumer.” To scale out the HTTP server, developers must set up the port

environment, and the scaling process can begin. Scaling out the HTTP server creates two

services with the same process but different port values. For efficiency, developers are

advised to use a load balancer.

9) Disposability: This principle relates to application performance. An application should be

able to start up quickly and shut down gracefully. Graceful shutdown involves delaying the

application termination process. Rejecting incoming requests and completing requests

already in the process helps minimize data corruption caused by sudden process

termination. During graceful shutdown, the application should ensure that all instances of

other services are correctly terminated. For example, when an application has a database

connection, that connection must be closed when the application is stopped to avoid zombie

connections. This principle has been implemented in the developed architecture, which can

start up very quickly, completing the process in 1.1206623 seconds. The architecture has

also implemented graceful shutdown during application shutdown, including all machines

in the interfaces and when closing all drivers.

10) Dev/prod parity: This principle historically addresses substantial gaps between

development and production conditions. It cannot yet be implemented in the designed

architecture, which remains a codebase and is not tied to a production environment.

However, it can be used when developers use the architecture for their own application

development.

11) Logs: In this principle, applications must implement a logging system. The architecture has

implemented logging using a JSON format for log output. In the architecture, there are two

log writing processes. The first process displays logs in a console for developers to view

directly. The second process saves logs to a file, allowing developers to process stored data

to review events that have occurred quickly. In the architecture, developers can define log

levels such as info, error, warning, fatal, and panic. Logging in the architecture can also be

integrated with other applications for log management services, such as ELK Stack.

12) Admin Processes: This is a regulatory process that can be run separately for administrative

purposes, such as database migration, tools, or other commands. Admin processes are

typically run in a shell or console. The architecture includes an admin process service called

ELSA. Developers can run the program whether the main application is running or not.

Developers can interact with ELSA by typing “go run main.go elsa ${argument}”.

Black Box Testing

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1151

Black box testing is a method used to test the functionality of the developed architecture.

Testing in the research is divided into two types based on all available use cases. The first test

is conducted to evaluate the functionality of the ELSA program, while the next test assesses

the architecture program. The following table presents the testing results for the architecture:

Table 1. Black Box Testing ELSA

No Scenarios Result

1 Automatic creation of env files Success

2 Cleaning of entire log files Success

3 Creation of a new domain Success

4 Create a migration schema Success

5 Run the schema migration pipeline Success

6 Execute schema migration specifics Success

7 Run the rollback command of the entire schema migration Success

8 Run schema migration specific rollback commands Success

9 Run the refresh migration schema command Success

10 Runs the migration scheme specific refresh command Success

11 Create a seeder scheme Success

12 Performs the entire seeder migration Success

13 Execute schema migration specifics Success

Table 2. Black Box Testing XARCH

No Scenarios Result

1 Running all engine interfaces Success

2 Running specific engine interfaces Success

3 Checking the graceful shutdown feature Success

4 Checking the logging system Success

Load testing is used to evaluate the performance of the developed architecture. This stage

involves creating testing scenarios along with expectations or goals for the testing. Below is a

table outlining the scenarios and results of the testing conducted on the architecture:

Table 3. Load Testing

NO Attribute Value

1 Software Tools JMeter 5.4.3

2 Objective The testing is conducted to evaluate the architecture's performance based on the

percentage of successful and failed outcomes and to assess the behavior of

dependencies, such as the database.

3 Scenario Send 1000 requests to the health endpoint within 10 seconds, or 100 per second. The

health endpoint is chosen because it includes initialization checks on dependencies

and connections.

4 Goals Achieve an average response time of less than 1 second with an error rate as low as

possible, up to a maximum tolerance of 5% of the total requests.

5 Result Load Test In performance testing, the architecture demonstrated the ability to handle all

incoming requests with an error rate of 0%. The results obtained are as follows:

1. Average Response Time: 222 ms

2. Min Response Time: 34 ms

3. Max Response Time: 1,215 ms

4. Standard Deviation: 269.00

5. Error: 0%

6. Throughput: 92.8 requests/second

7. Received Data: 104.58 KB/second

8. Sent Data: 11.23 KB/second

Average Bytes: 1,154.3

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1152

6 Driver

performance

analyst.

The driver's performance testing revealed 1,000 connection interactions (equal to the

number of requests) and a maximum of 25 open connections. These results are due

to the use of connection pool technology.

CONCLUSION

Based on the research results, the architectural design supports continuous development

by dividing services into small, independent units, enabling rapid integration of new

technologies. The implementation of Twelve-Factor App methodology principles provides a

descriptive format that enhances automation, supported by revision control and isolated

dependencies for streamlined installation. This approach reduces operating system reliance and

improves efficiency. The architecture is deployable on modern cloud platforms using methods

such as Docker files, with its stateless nature facilitating scalability. Additionally, applying

domain-driven design principles by breaking down components according to business domains

enhances resource management, performance, and communication through ubiquitous

language, minimizing miscommunication. Future research should explore advanced

automation, incorporate emerging technologies such as serverless and edge computing, and

strengthen security and compliance. Further refinement of domain-driven design principles,

performance optimization, user experience improvements, collaboration mechanisms, real-

world case studies, benchmarking, and examining the environmental impact of cloud

deployments will enhance the architecture’s scalability, efficiency, and sustainability in line

with evolving technological demands.

REFERENCES

Akinsola, J. E., Ogunbanwo, A. S., Okesola, O. J., Odun-Ayo, I. J., Ayegbusi, F. D., & Adebiyi,

A. A. (2020). Comparative analysis of software development life cycle models (SDLC).

In Intelligent Algorithms in Software Engineering: Proceedings of the 9th Computer

Science On-line Conference 2020 (pp. 310–322). Springer International Publishing.

Ali, M. B., Wood-Harper, T., & Ramlogan, R. (2020). The role of SaaS applications in business

IT alignment: A closer look at value creation in service industry. United Kingdom

Academy for Information Systems.

Ait Said, M., Belouaddane, L., Mihi, S., & Ezzati, A. (2024). A systematic framework to

enhance reusability in microservice architecture. International Journal of Computing and

Digital Systems, 16(1), 189–203.

Khan, O. M. A., Siddiqui, N., Oleson, T., & Fussell, M. (2021). Embracing microservices

design: A practical guide to revealing anti-patterns and architectural pitfalls to avoid

microservices fallacies. Packt Publishing Ltd.

Karunarathne, M. A. W., Wijayanayake, W. M. J. I., & Prasadika, A. P. K. J. (2024). DevOps

adoption in software development organizations: A systematic literature review. In 2024

4th International Conference on Advanced Research in Computing (ICARC) (pp. 1–7).

IEEE.

Indrasiri, K., & Suhothayan, S. (2021). Design patterns for cloud native applications. O’Reilly

Media, Inc.

Kosińska, J., Baliś, B., Konieczny, M., Malawski, M., & Zielinśki, S. (2023). Towards the

observability of cloud-native applications: The overview of the state-of-the-art. IEEE

Access.

Li, B., & Kumar, S. (2022). Managing software-as-a-service: Pricing and operations.

Production and Operations Management, 31(6), 2588–2608.

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1153

Lopez-Viana, R., Diaz, J., Díaz, V. H., & Martinez, J.-F. (2020). Continuous delivery of

customized SaaS edge applications in highly distributed IoT systems. IEEE Internet of

Things Journal, 7(10), 10189–10199.

Marii, B., & Zholubak, I. (2022). Features of development and analysis of REST systems.

Advances in Cyber-Physical Systems, 7(2).

Oukes, P., Andel, M. V., Folmer, E., Bennett, R., & Lemmen, C. (2021). Domain-driven design

applied to land administration system development: Lessons from the Netherlands. Land

Use Policy, 104.

Özkan, O., Babur, Ö., & Brand, M. V. D. (2021). Refactoring with domain-driven design in an

industrial context: An action research report. Empirical Software Engineering, 28(4).

Pargaonkar, S. (2023). A comprehensive research analysis of software development life cycle

(SDLC) Agile & Waterfall model: Advantages, disadvantages, and application suitability

in software quality engineering. International Journal of Scientific and Research

Publications, 13(8).

Pervin, H. (2021). Software as a service and security. World Journal of Advanced Research

and Reviews, 11(3), 327–331.

Raj, P., & David, G. S. S. (2021). Engineering resilient microservices toward system reliability:

The technologies and tools. In Cloud Reliability Engineering.

Raghavan, S. R., Jayasimha, K. R., & Nargundkar, R. V. (2020). Impact of software as a service

(SaaS) on software acquisition process. Journal of Business & Industrial Marketing,

35(4), 757–770.

Saieva, A., & Kaiser, G. (2022). Update with care: Testing candidate bug fixes and integrating

selective updates through binary rewriting. Journal of Systems and Software, 191.

Sangapu, S. S., Panyam, D., & Marston, J. (2022). The definitive guide to modernizing

applications on Google Cloud: The what, why, and how of application modernization on

Google Cloud. Packt Publishing Ltd.

Shah, S. D. A., Gregory, M. A., Li, S., & Fontes, R. D. R. (2020). SDN enhanced multi-access

edge computing (MEC) for E2E mobility and QoS management. IEEE Access, 8, 77459–

77469.

Sharma, S. (2023). Modern API development with Spring 6 and Spring Boot 3: Design

scalable, viable, and reactive APIs with REST, gRPC, and GraphQL using Java 17 and

Spring Boot 3. Packt Publishing Ltd.

Singjai, A., Zdun, U., & Zimmermann, O. (2021). Practitioner views on the interrelation of

microservice APIs and domain-driven design: A grey literature study based on grounded

theory. In 2021 IEEE 18th International Conference on Software Architecture (ICSA)

(pp. 1–10). IEEE.

Stüber, M., & Frey, G. (2021). A cloud-native implementation of the simulation as a service-

concept based on FMI. In Modelica Conferences (pp. 393–402).

Telang, T. (2022). Microservices architecture. In Beginning cloud native development with

MicroProfile, Jakarta EE, and Kubernetes: Java DevOps for building and deploying

microservices-based applications. Apress.

Thatikonda, V. K. (2023). Beyond the buzz: A journey through CI/CD principles and best

practices. European Journal of Theoretical and Applied Sciences, 1(5), 334–340.

Throner, S., Abeck, S., Petrovic, P., & Hütter, H. (2023). A DevOps approach to the mitigation

of security vulnerabilities in runtime environments. In 2023 IEEE International

Conference on Service-Oriented System Engineering (SOSE) (pp. 106–113). IEEE.

Vural, H., & Koyuncu, M. (2021). Does domain-driven design lead to finding the optimal

modularity of a microservice? IEEE Access, 9, 32721–32733.

Yellavula, N. (2020). Hands-on RESTful web services with Go: Develop elegant RESTful

APIs with Golang for microservices and the cloud. Packt Publishing Ltd.

Risky Kurniawan*, Rangga Sanjaya

Enrichment: Journal of Multidisciplinary Research and Development, 3 (5), 2025 1154

Hofer, S., & Schwentner, H. (2021). Domain storytelling: A collaborative, visual, and agile

way to build domain-driven software. Addison-Wesley Professional.

